Läser in [MathJax]/localization/sv/MathMenu.js

Egenskaper av talföljden 6, 15, 27, 42, ...

Vi har talföljden 6,15,27,42,...

  1. Vad är differensen? Är den konstant eller jämt växande?
  2. Skriv ett uttryck för an
  3. Prova formeln an för n=4

Ledtråd: Utgå från differensen mellan 6 och 15 när uttrycket för an skapas

Lösning:

  1. Differensen mellan 6och15=9, differensen mellan 15och27=12, differensen mellan 27och42=15. Vi ser att den är konstant växande med 3.
  2. Differensen=9=33=3(2+1)=3(n+1),n=2
    an=an1+3(n+1)
  3. För n=4: a4=27+3(4+1)=27+15=42
    Vi ser att formeln för an stämmer.
Har du en fråga du vill ställa om Egenskaper av talföljden 6, 15, 27, 42, ...? Ställ den på Pluggakuten.se
Har du hittat ett fel, eller har du kommentarer till materialet på den här sidan? Mejla matteboken@mattecentrum.se

Vi har talföljden \(6, 15, 27, 42, ...\)

  1. Vad är differensen? Är den konstant eller jämt växande?
  2. Skriv ett uttryck för \(a_n\)
  3. Prova formeln \(a_n\) för \(n=4\)

Ledtråd: Utgå från differensen mellan \(6\) och \(15\) när uttrycket för \(a_n\) skapas

Lösning:

  1. Differensen mellan \(6\;\text{och}\;15=9\), differensen mellan \(15\;\text{och}\;27=12\), differensen mellan \(27\;\text{och}\;42=15\). Vi ser att den är konstant växande med \(3\).
  2. \(\text{Differensen}\;=9= 3\cdot3=3(2+1)=3(n+1),\;\text{då}\;n=2\)
    $$a_n= a_{n-1}+3(n+1)$$
  3. För \(n=4\): \(a_4=27+3(4+1)=27+15=42\)
    Vi ser att formeln för \(a_n\) stämmer.
Har du en fråga du vill ställa om Egenskaper av talföljden 6, 15, 27, 42, ...? Ställ den på Pluggakuten.se
Har du hittat ett fel, eller har du kommentarer till materialet på den här sidan? Mejla matteboken@mattecentrum.se